logo

Dvourozměrný binární indexovaný strom nebo fenwick strom

Předpoklad - Fenwick Tree

Víme, že pro zodpovězení dotazů na rozsah součtu na 1-D pole efektivně binární indexovaný strom (nebo strom Fenwick) je nejlepší volbou (ještě lepší než strom segmentu kvůli menším požadavkům na paměť a trochu rychlejší než strom segmentu).



Můžeme odpovědět na dotazy na sub-matix součtu efektivně pomocí binárního indexovaného stromu?

Odpověď je Ano . To je možné pomocí a 2d bit Což není nic jiného než řada 1D bitů. 

chyba: nelze najít nebo načíst hlavní třídu

Algoritmus:

Zvažujeme níže uvedený příklad. Předpokládejme, že musíme najít součet všech čísel uvnitř zvýrazněné oblasti:



Fenwick Tree' title=

Předpokládáme, že původ matice dole - o. poté 2d bit využívá skutečnost, že-

javascriptový tisk
Sum under the marked area = Sum(OB) - Sum(OD) - Sum(OA) + Sum(OC) 

Dvourozměrný binární indexovaný strom nebo fenwick strom



V našem programu používáme funkci getsum (x y), která najde součet matice od (0 0) do (x y). 
Proto níže uvedený vzorec: 

Sum under the marked area = Sum(OB) - Sum(OD) - Sum(OA) + Sum(OC) The above formula gets reduced to Query(x1y1x2y2) = getSum(x2 y2) - getSum(x2 y1-1) - getSum(x1-1 y2) + getSum(x1-1 y1-1) 

kde 
x1 y1 = x a y souřadnice C 
x2 y2 = x a y souřadnice b
Funkce aktualizace (x y val) aktualizuje všechny prvky v regionu - (x y) až (n m) kde 
N = maximální souřadnice X celé matice. 
M = Maximální y souřadnice celé matice.
Postup zbytku je docela podobný postupu 1D binárního indexovaného stromu.

Níže je uvedena implementace 2D indexovaného stromu C ++ 

C++
/* C++ program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x y) means it's effect will be found throughout the rectangle [(x y) (max_x max_y)] and query for (x y) gives you the result of the rectangle [(0 0) (x y)] assuming the total rectangle is [(0 0) (max_x max_y)]. So when you query and update on this BITyou have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1 y1) (x2 y2)] the following steps are necessary: Query(x1y1x2y2) = getSum(x2 y2)-getSum(x2 y1-1) -  getSum(x1-1 y2)+getSum(x1-1 y1-1) Here 'Query(x1y1x2y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1 y1) and top-right corner's co-ordinates - (x2 y2) Constraints -> x1<=x2 and y1<=y2  /  y |  | --------(x2y2)  | | |  | | |  | | |  | ---------  | (x1y1)  |  |___________________________  (0 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ #include   using namespace std; #define N 4 // N-->max_x and max_y // A structure to hold the queries struct Query {  int x1 y1; // x and y co-ordinates of bottom left  int x2 y2; // x and y co-ordinates of top right }; // A function to update the 2D BIT void updateBIT(int BIT[][N+1] int x int y int val) {  for (; x <= N; x += (x & -x))  {  // This loop update all the 1D BIT inside the  // array of 1D BIT = BIT[x]  for (int yy=y; yy <= N; yy += (yy & -yy))  BIT[x][yy] += val;  }  return; } // A function to get sum from (0 0) to (x y) int getSum(int BIT[][N+1] int x int y) {  int sum = 0;  for(; x > 0; x -= x&-x)  {  // This loop sum through all the 1D BIT  // inside the array of 1D BIT = BIT[x]  for(int yy=y; yy > 0; yy -= yy&-yy)  {  sum += BIT[x][yy];  }  }  return sum; } // A function to create an auxiliary matrix // from the given input matrix void constructAux(int mat[][N] int aux[][N+1]) {  // Initialise Auxiliary array to 0  for (int i=0; i<=N; i++)  for (int j=0; j<=N; j++)  aux[i][j] = 0;  // Construct the Auxiliary Matrix  for (int j=1; j<=N; j++)  for (int i=1; i<=N; i++)  aux[i][j] = mat[N-j][i-1];  return; } // A function to construct a 2D BIT void construct2DBIT(int mat[][N] int BIT[][N+1]) {  // Create an auxiliary matrix  int aux[N+1][N+1];  constructAux(mat aux);  // Initialise the BIT to 0  for (int i=1; i<=N; i++)  for (int j=1; j<=N; j++)  BIT[i][j] = 0;  for (int j=1; j<=N; j++)  {  for (int i=1; i<=N; i++)  {  // Creating a 2D-BIT using update function  // everytime we/ encounter a value in the  // input 2D-array  int v1 = getSum(BIT i j);  int v2 = getSum(BIT i j-1);  int v3 = getSum(BIT i-1 j-1);  int v4 = getSum(BIT i-1 j);  // Assigning a value to a particular element  // of 2D BIT  updateBIT(BIT i j aux[i][j]-(v1-v2-v4+v3));  }  }  return; } // A function to answer the queries void answerQueries(Query q[] int m int BIT[][N+1]) {  for (int i=0; i<m; i++)  {  int x1 = q[i].x1 + 1;  int y1 = q[i].y1 + 1;  int x2 = q[i].x2 + 1;  int y2 = q[i].y2 + 1;  int ans = getSum(BIT x2 y2)-getSum(BIT x2 y1-1)-  getSum(BIT x1-1 y2)+getSum(BIT x1-1 y1-1);  printf ('Query(%d %d %d %d) = %dn'  q[i].x1 q[i].y1 q[i].x2 q[i].y2 ans);  }  return; } // Driver program int main() {  int mat[N][N] = {{1 2 3 4}  {5 3 8 1}  {4 6 7 5}  {2 4 8 9}};  // Create a 2D Binary Indexed Tree  int BIT[N+1][N+1];  construct2DBIT(mat BIT);  /* Queries of the form - x1 y1 x2 y2  For example the query- {1 1 3 2} means the sub-matrix-  y  /  3 | 1 2 3 4 Sub-matrix  2 | 5 3 8 1 {1132} ---> 3 8 1  1 | 4 6 7 5 6 7 5  0 | 2 4 8 9  |  --|------ 0 1 2 3 ----> x  |  Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30  */  Query q[] = {{1 1 3 2} {2 3 3 3} {1 1 1 1}};  int m = sizeof(q)/sizeof(q[0]);  answerQueries(q m BIT);  return(0); } 
Java
/* Java program to implement 2D Binary Indexed Tree  2D BIT is basically a BIT where each element is another BIT.  Updating by adding v on (x y) means it's effect will be found  throughout the rectangle [(x y) (max_x max_y)]  and query for (x y) gives you the result of the rectangle  [(0 0) (x y)] assuming the total rectangle is  [(0 0) (max_x max_y)]. So when you query and update on  this BITyou have to be careful about how many times you are  subtracting a rectangle and adding it. Simple set union formula  works here.  So if you want to get the result of a specific rectangle  [(x1 y1) (x2 y2)] the following steps are necessary:  Query(x1y1x2y2) = getSum(x2 y2)-getSum(x2 y1-1) -   getSum(x1-1 y2)+getSum(x1-1 y1-1)  Here 'Query(x1y1x2y2)' means the sum of elements enclosed  in the rectangle with bottom-left corner's co-ordinates  (x1 y1) and top-right corner's co-ordinates - (x2 y2)  Constraints -> x1<=x2 and y1<=y2   /  y |   | --------(x2y2)   | | |   | | |   | | |   | ---------   | (x1y1)   |   |___________________________  (0 0) x-->  In this program we have assumed a square matrix. The  program can be easily extended to a rectangular one. */ class GFG {  static final int N = 4; // N-.max_x and max_y  // A structure to hold the queries  static class Query  {   int x1 y1; // x and y co-ordinates of bottom left   int x2 y2; // x and y co-ordinates of top right   public Query(int x1 int y1 int x2 int y2)  {  this.x1 = x1;  this.y1 = y1;  this.x2 = x2;  this.y2 = y2;  }   };  // A function to update the 2D BIT  static void updateBIT(int BIT[][] int x  int y int val)  {   for (; x <= N; x += (x & -x))   {   // This loop update all the 1D BIT inside the   // array of 1D BIT = BIT[x]   for (; y <= N; y += (y & -y))   BIT[x][y] += val;   }   return;  }  // A function to get sum from (0 0) to (x y)  static int getSum(int BIT[][] int x int y)  {   int sum = 0;   for(; x > 0; x -= x&-x)   {   // This loop sum through all the 1D BIT   // inside the array of 1D BIT = BIT[x]   for(; y > 0; y -= y&-y)   {   sum += BIT[x][y];   }   }   return sum;  }  // A function to create an auxiliary matrix  // from the given input matrix  static void constructAux(int mat[][] int aux[][])  {   // Initialise Auxiliary array to 0   for (int i = 0; i <= N; i++)   for (int j = 0; j <= N; j++)   aux[i][j] = 0;   // Construct the Auxiliary Matrix   for (int j = 1; j <= N; j++)   for (int i = 1; i <= N; i++)   aux[i][j] = mat[N - j][i - 1];   return;  }  // A function to construct a 2D BIT  static void construct2DBIT(int mat[][]  int BIT[][])  {   // Create an auxiliary matrix   int [][]aux = new int[N + 1][N + 1];   constructAux(mat aux);   // Initialise the BIT to 0   for (int i = 1; i <= N; i++)   for (int j = 1; j <= N; j++)   BIT[i][j] = 0;   for (int j = 1; j <= N; j++)   {   for (int i = 1; i <= N; i++)   {   // Creating a 2D-BIT using update function   // everytime we/ encounter a value in the   // input 2D-array   int v1 = getSum(BIT i j);   int v2 = getSum(BIT i j - 1);   int v3 = getSum(BIT i - 1 j - 1);   int v4 = getSum(BIT i - 1 j);   // Assigning a value to a particular element   // of 2D BIT   updateBIT(BIT i j aux[i][j] -   (v1 - v2 - v4 + v3));   }   }   return;  }  // A function to answer the queries  static void answerQueries(Query q[] int m int BIT[][])  {   for (int i = 0; i < m; i++)   {   int x1 = q[i].x1 + 1;   int y1 = q[i].y1 + 1;   int x2 = q[i].x2 + 1;   int y2 = q[i].y2 + 1;   int ans = getSum(BIT x2 y2) -  getSum(BIT x2 y1 - 1) -   getSum(BIT x1 - 1 y2) +  getSum(BIT x1 - 1 y1 - 1);   System.out.printf('Query(%d %d %d %d) = %dn'   q[i].x1 q[i].y1 q[i].x2 q[i].y2 ans);   }   return;  }  // Driver Code public static void main(String[] args)  {   int mat[][] = { {1 2 3 4}   {5 3 8 1}   {4 6 7 5}   {2 4 8 9} };   // Create a 2D Binary Indexed Tree   int [][]BIT = new int[N + 1][N + 1];   construct2DBIT(mat BIT);   /* Queries of the form - x1 y1 x2 y2   For example the query- {1 1 3 2} means the sub-matrix-   y   /   3 | 1 2 3 4 Sub-matrix   2 | 5 3 8 1 {1132} --. 3 8 1   1 | 4 6 7 5 6 7 5   0 | 2 4 8 9   |   --|------ 0 1 2 3 ---. x   |     Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30   */  Query q[] = {new Query(1 1 3 2)   new Query(2 3 3 3)   new Query(1 1 1 1)};   int m = q.length;   answerQueries(q m BIT);  } }  // This code is contributed by 29AjayKumar 
Python3
'''Python3 program to implement 2D Binary Indexed Tree    2D BIT is basically a BIT where each element is another BIT.  Updating by adding v on (x y) means it's effect will be found  throughout the rectangle [(x y) (max_x max_y)]  and query for (x y) gives you the result of the rectangle  [(0 0) (x y)] assuming the total rectangle is  [(0 0) (max_x max_y)]. So when you query and update on  this BITyou have to be careful about how many times you are  subtracting a rectangle and adding it. Simple set union formula  works here.    So if you want to get the result of a specific rectangle  [(x1 y1) (x2 y2)] the following steps are necessary:    Query(x1y1x2y2) = getSum(x2 y2)-getSum(x2 y1-1) -   getSum(x1-1 y2)+getSum(x1-1 y1-1)    Here 'Query(x1y1x2y2)' means the sum of elements enclosed  in the rectangle with bottom-left corner's co-ordinates  (x1 y1) and top-right corner's co-ordinates - (x2 y2)    Constraints -> x1<=x2 and y1<=y2     /  y |   | --------(x2y2)   | | |   | | |   | | |   | ---------   | (x1y1)   |   |___________________________  (0 0) x-->    In this program we have assumed a square matrix. The  program can be easily extended to a rectangular one. ''' N = 4 # N-.max_x and max_y  # A structure to hold the queries  class Query: def __init__(self x1y1x2y2): self.x1 = x1; self.y1 = y1; self.x2 = x2; self.y2 = y2; # A function to update the 2D BIT  def updateBIT(BITxyval): while x <= N: # This loop update all the 1D BIT inside the  # array of 1D BIT = BIT[x]  while y <= N: BIT[x][y] += val; y += (y & -y) x += (x & -x) return; # A function to get sum from (0 0) to (x y)  def getSum(BITxy): sum = 0; while x > 0: # This loop sum through all the 1D BIT  # inside the array of 1D BIT = BIT[x]  while y > 0: sum += BIT[x][y]; y -= y&-y x -= x&-x return sum; # A function to create an auxiliary matrix  # from the given input matrix  def constructAux(mataux): # Initialise Auxiliary array to 0  for i in range(N + 1): for j in range(N + 1): aux[i][j] = 0 # Construct the Auxiliary Matrix  for j in range(1 N + 1): for i in range(1 N + 1): aux[i][j] = mat[N - j][i - 1]; return # A function to construct a 2D BIT  def construct2DBIT(matBIT): # Create an auxiliary matrix  aux = [None for i in range(N + 1)] for i in range(N + 1) : aux[i]= [None for i in range(N + 1)] constructAux(mat aux) # Initialise the BIT to 0  for i in range(1 N + 1): for j in range(1 N + 1): BIT[i][j] = 0; for j in range(1 N + 1): for i in range(1 N + 1): # Creating a 2D-BIT using update function  # everytime we/ encounter a value in the  # input 2D-array  v1 = getSum(BIT i j); v2 = getSum(BIT i j - 1); v3 = getSum(BIT i - 1 j - 1); v4 = getSum(BIT i - 1 j); # Assigning a value to a particular element  # of 2D BIT  updateBIT(BIT i j aux[i][j] - (v1 - v2 - v4 + v3)); return; # A function to answer the queries  def answerQueries(qmBIT): for i in range(m): x1 = q[i].x1 + 1; y1 = q[i].y1 + 1; x2 = q[i].x2 + 1; y2 = q[i].y2 + 1; ans = getSum(BIT x2 y2) -  getSum(BIT x2 y1 - 1) -  getSum(BIT x1 - 1 y2) +  getSum(BIT x1 - 1 y1 - 1); print('Query (' q[i].x1 ' ' q[i].y1 ' ' q[i].x2 ' '  q[i].y2 ') = ' ans sep = '') return; # Driver Code mat= [[1 2 3 4] [5 3 8 1] [4 6 7 5] [2 4 8 9]]; # Create a 2D Binary Indexed Tree  BIT = [None for i in range(N + 1)] for i in range(N + 1): BIT[i]= [None for i in range(N + 1)] for j in range(N + 1): BIT[i][j]=0 construct2DBIT(mat BIT);   ''' Queries of the form - x1 y1 x2 y2   For example the query- {1 1 3 2} means the sub-matrix-   y   /   3 | 1 2 3 4 Sub-matrix   2 | 5 3 8 1 {1132} --. 3 8 1   1 | 4 6 7 5 6 7 5   0 | 2 4 8 9   |   --|------ 0 1 2 3 ---. x   |     Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30     ''' q = [Query(1 1 3 2) Query(2 3 3 3) Query(1 1 1 1)]; m = len(q) answerQueries(q m BIT); # This code is contributed by phasing17 
C#
/* C# program to implement 2D Binary Indexed Tree  2D BIT is basically a BIT where each element is another BIT.  Updating by.Adding v on (x y) means it's effect will be found  throughout the rectangle [(x y) (max_x max_y)]  and query for (x y) gives you the result of the rectangle  [(0 0) (x y)] assuming the total rectangle is  [(0 0) (max_x max_y)]. So when you query and update on  this BITyou have to be careful about how many times you are  subtracting a rectangle and.Adding it. Simple set union formula  works here.  So if you want to get the result of a specific rectangle  [(x1 y1) (x2 y2)] the following steps are necessary:  Query(x1y1x2y2) = getSum(x2 y2)-getSum(x2 y1-1) -   getSum(x1-1 y2)+getSum(x1-1 y1-1)  Here 'Query(x1y1x2y2)' means the sum of elements enclosed  in the rectangle with bottom-left corner's co-ordinates  (x1 y1) and top-right corner's co-ordinates - (x2 y2)  Constraints -> x1<=x2 and y1<=y2   /  y |   | --------(x2y2)   | | |   | | |   | | |   | ---------   | (x1y1)   |   |___________________________  (0 0) x-->  In this program we have assumed a square matrix. The  program can be easily extended to a rectangular one. */ using System; class GFG {  static readonly int N = 4; // N-.max_x and max_y  // A structure to hold the queries  public class Query  {   public int x1 y1; // x and y co-ordinates of bottom left   public int x2 y2; // x and y co-ordinates of top right   public Query(int x1 int y1 int x2 int y2)  {  this.x1 = x1;  this.y1 = y1;  this.x2 = x2;  this.y2 = y2;  }   };  // A function to update the 2D BIT  static void updateBIT(int []BIT int x  int y int val)  {   for (; x <= N; x += (x & -x))   {   // This loop update all the 1D BIT inside the   // array of 1D BIT = BIT[x]   for (; y <= N; y += (y & -y))   BIT[xy] += val;   }   return;  }  // A function to get sum from (0 0) to (x y)  static int getSum(int []BIT int x int y)  {   int sum = 0;   for(; x > 0; x -= x&-x)   {   // This loop sum through all the 1D BIT   // inside the array of 1D BIT = BIT[x]   for(; y > 0; y -= y&-y)   {   sum += BIT[x y];   }   }   return sum;  }  // A function to create an auxiliary matrix  // from the given input matrix  static void constructAux(int []mat int []aux)  {   // Initialise Auxiliary array to 0   for (int i = 0; i <= N; i++)   for (int j = 0; j <= N; j++)   aux[i j] = 0;   // Construct the Auxiliary Matrix   for (int j = 1; j <= N; j++)   for (int i = 1; i <= N; i++)   aux[i j] = mat[N - j i - 1];   return;  }  // A function to construct a 2D BIT  static void construct2DBIT(int []mat  int []BIT)  {   // Create an auxiliary matrix   int []aux = new int[N + 1 N + 1];   constructAux(mat aux);   // Initialise the BIT to 0   for (int i = 1; i <= N; i++)   for (int j = 1; j <= N; j++)   BIT[i j] = 0;   for (int j = 1; j <= N; j++)   {   for (int i = 1; i <= N; i++)   {   // Creating a 2D-BIT using update function   // everytime we/ encounter a value in the   // input 2D-array   int v1 = getSum(BIT i j);   int v2 = getSum(BIT i j - 1);   int v3 = getSum(BIT i - 1 j - 1);   int v4 = getSum(BIT i - 1 j);   // Assigning a value to a particular element   // of 2D BIT   updateBIT(BIT i j aux[ij] -   (v1 - v2 - v4 + v3));   }   }   return;  }  // A function to answer the queries  static void answerQueries(Query []q int m int []BIT)  {   for (int i = 0; i < m; i++)   {   int x1 = q[i].x1 + 1;   int y1 = q[i].y1 + 1;   int x2 = q[i].x2 + 1;   int y2 = q[i].y2 + 1;   int ans = getSum(BIT x2 y2) -  getSum(BIT x2 y1 - 1) -   getSum(BIT x1 - 1 y2) +  getSum(BIT x1 - 1 y1 - 1);   Console.Write('Query({0} {1} {2} {3}) = {4}n'   q[i].x1 q[i].y1 q[i].x2 q[i].y2 ans);   }   return;  }  // Driver Code public static void Main(String[] args)  {   int []mat = { {1 2 3 4}   {5 3 8 1}   {4 6 7 5}   {2 4 8 9} };   // Create a 2D Binary Indexed Tree   int []BIT = new int[N + 1N + 1];   construct2DBIT(mat BIT);   /* Queries of the form - x1 y1 x2 y2   For example the query- {1 1 3 2} means the sub-matrix-   y   /   3 | 1 2 3 4 Sub-matrix   2 | 5 3 8 1 {1132} --. 3 8 1   1 | 4 6 7 5 6 7 5   0 | 2 4 8 9   |   --|------ 0 1 2 3 ---. x   |     Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30   */  Query []q = {new Query(1 1 3 2)   new Query(2 3 3 3)   new Query(1 1 1 1)};   int m = q.Length;   answerQueries(q m BIT);  } } // This code is contributed by Rajput-Ji 
JavaScript
<script> /* Javascript program to implement 2D Binary Indexed Tree    2D BIT is basically a BIT where each element is another BIT.  Updating by adding v on (x y) means it's effect will be found  throughout the rectangle [(x y) (max_x max_y)]  and query for (x y) gives you the result of the rectangle  [(0 0) (x y)] assuming the total rectangle is  [(0 0) (max_x max_y)]. So when you query and update on  this BITyou have to be careful about how many times you are  subtracting a rectangle and adding it. Simple set union formula  works here.    So if you want to get the result of a specific rectangle  [(x1 y1) (x2 y2)] the following steps are necessary:    Query(x1y1x2y2) = getSum(x2 y2)-getSum(x2 y1-1) -   getSum(x1-1 y2)+getSum(x1-1 y1-1)    Here 'Query(x1y1x2y2)' means the sum of elements enclosed  in the rectangle with bottom-left corner's co-ordinates  (x1 y1) and top-right corner's co-ordinates - (x2 y2)    Constraints -> x1<=x2 and y1<=y2     /  y |   | --------(x2y2)   | | |   | | |   | | |   | ---------   | (x1y1)   |   |___________________________  (0 0) x-->    In this program we have assumed a square matrix. The  program can be easily extended to a rectangular one. */ let N = 4; // N-.max_x and max_y  // A structure to hold the queries  class Query  {  constructor(x1y1x2y2)  {  this.x1 = x1;  this.y1 = y1;  this.x2 = x2;  this.y2 = y2;  } } // A function to update the 2D BIT  function updateBIT(BITxyval) {  for (; x <= N; x += (x & -x))   {   // This loop update all the 1D BIT inside the   // array of 1D BIT = BIT[x]   for (; y <= N; y += (y & -y))   BIT[x][y] += val;   }   return;  } // A function to get sum from (0 0) to (x y)  function getSum(BITxy) {  let sum = 0;     for(; x > 0; x -= x&-x)   {   // This loop sum through all the 1D BIT   // inside the array of 1D BIT = BIT[x]   for(; y > 0; y -= y&-y)   {   sum += BIT[x][y];   }   }   return sum;  } // A function to create an auxiliary matrix  // from the given input matrix  function constructAux(mataux) {  // Initialise Auxiliary array to 0   for (let i = 0; i <= N; i++)   for (let j = 0; j <= N; j++)   aux[i][j] = 0;     // Construct the Auxiliary Matrix   for (let j = 1; j <= N; j++)   for (let i = 1; i <= N; i++)   aux[i][j] = mat[N - j][i - 1];     return;  } // A function to construct a 2D BIT  function construct2DBIT(matBIT) {  // Create an auxiliary matrix   let aux = new Array(N + 1);  for(let i=0;i<(N+1);i++)  {  aux[i]=new Array(N+1);  }  constructAux(mat aux);     // Initialise the BIT to 0   for (let i = 1; i <= N; i++)   for (let j = 1; j <= N; j++)   BIT[i][j] = 0;     for (let j = 1; j <= N; j++)   {   for (let i = 1; i <= N; i++)   {   // Creating a 2D-BIT using update function   // everytime we/ encounter a value in the   // input 2D-array   let v1 = getSum(BIT i j);   let v2 = getSum(BIT i j - 1);   let v3 = getSum(BIT i - 1 j - 1);   let v4 = getSum(BIT i - 1 j);     // Assigning a value to a particular element   // of 2D BIT   updateBIT(BIT i j aux[i][j] -   (v1 - v2 - v4 + v3));   }   }   return;  } // A function to answer the queries  function answerQueries(qmBIT) {  for (let i = 0; i < m; i++)   {   let x1 = q[i].x1 + 1;   let y1 = q[i].y1 + 1;   let x2 = q[i].x2 + 1;   let y2 = q[i].y2 + 1;     let ans = getSum(BIT x2 y2) -  getSum(BIT x2 y1 - 1) -   getSum(BIT x1 - 1 y2) +  getSum(BIT x1 - 1 y1 - 1);     document.write('Query ('+q[i].x1+' ' +q[i].y1+' ' +q[i].x2+' ' +q[i].y2+') = ' +ans+'  
'
); } return; } // Driver Code let mat= [[1 2 3 4] [5 3 8 1] [4 6 7 5] [2 4 8 9]]; // Create a 2D Binary Indexed Tree let BIT = new Array(N + 1); for(let i=0;i<(N+1);i++) { BIT[i]=new Array(N+1); for(let j=0;j<(N+1);j++) { BIT[i][j]=0; } } construct2DBIT(mat BIT); /* Queries of the form - x1 y1 x2 y2 For example the query- {1 1 3 2} means the sub-matrix- y / 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1132} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ let q = [new Query(1 1 3 2) new Query(2 3 3 3) new Query(1 1 1 1)]; let m = q.length; answerQueries(q m BIT); // This code is contributed by rag2127 </script>

Výstup
Query(1 1 3 2) = 30 Query(2 3 3 3) = 7 Query(1 1 1 1) = 6 

Složitost času:  

návrhový vzor stavitele
  • Funkce updateBit (x y val) a funkce getsum (x y) vezmou čas (log (n)*log (m)).
  • Vytváření 2D bitvy o (nm log (n)*log (m)).
  • Protože v každé z dotazů voláme funkci getsum (x y), takže zodpovězení všech Q dotazů trvá O (Q*log (n)*log (m)) čas.
  • Proto je celková časová složitost programu O ((NM+Q)*Log (n)*log (m)) kde 
    N = maximální souřadnice celé matice. 
    M = maximální y koordinátu celé matice. 
    Q = počet dotazů.

Pomocný prostor: O (nm) ukládat bit a pomocné pole