logo

Teorie kombinatoriálních her Set 4 (Sprague - Grundy Teorém)

Předpoklady: Čísla/čísla Grundy a Mex
Už jsme viděli v sadě 2 (https://www.geeksforgeeks.org/dsa/combinatorial-tera-leory-set-2-rame-nim/), že můžeme najít, kdo vyhraje ve hře Nim, aniž by ve skutečnosti hrál hru.
Předpokládejme, že trochu změníme klasickou hru NIM. Tentokrát může každý hráč odstranit pouze 1 2 nebo 3 kameny (a ne žádný počet kamenů jako v klasické hře NIM). Můžeme předvídat, kdo vyhraje?
Ano, můžeme vítěze předvídat pomocí Sprague-Grundy Teorému.

Co je Sprague-Grundy Teorém?  
Předpokládejme, že existuje složená hra (více než jedna podhra) složená z N sub-her a dvou hráčů A a B. Potom Sprague-Grundy Teorém říká, že pokud A a B hrají optimálně (tj. Neudělují žádné chyby), pak hráč, který se stal prvním, je zaručen, že vyhraje, pokud je vyhrán, pokud je XOR z grundy počtu pozic v každém počátečním hraně. Jinak, pokud XOR vyhodnotí na nulu, pak přehrávač A ztratí rozhodně bez ohledu na to.

Jak aplikovat Sprague Grundy Teorém?  
Můžeme použít Sprague-Grundy Teorém v jakémkoli Nestranná hra a vyřešit to. Základní kroky jsou uvedeny takto: 



nahradit řetězec java
  1. Rozbijte kompozitní hru na dílčí hry.
  2. Poté pro každou podhru vypočítejte číslo Grundy v této poloze.
  3. Poté vypočítejte XOR všech vypočtených grundy čísel.
  4. Pokud je hodnota XOR nenulová, pak hráč, který se chystá otočit (první hráč), vyhraje jinak, že je předurčen ke ztrátě bez ohledu na to.

Příklad hra: Hra začíná tím, že 3 hromady mají 3 4 a 5 kamenů a přehrávač se může pohybovat jakýmkoli kladným počtem kamenů až 3 pouze z jakékoli hromady [za předpokladu, že hromada má tolik množství kamenů]. Poslední hráč, který přesune. Který hráč vyhraje hru za předpokladu, že oba hráči hrají optimálně?

Jak zjistit, kdo vyhraje aplikací Sprague-Grundy Teorém?  
Jak vidíme, že tato hra je samo o sobě složena z několika dílčích her. 
První krok: Sub-hry lze považovat za každé hromady. 
Druhý krok: Vidíme z níže uvedené tabulky 

Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1 

Sprague - Grundy Teorém' src='//techcodeview.com/img/combinatorial/87/combinatorial-game-theory-set-4-sprague-grundy-theorem.webp' title=

Už jsme viděli, jak vypočítat Grundyova čísla této hry v předchozí článek.
Třetí krok: Xor 3 0 1 = 2
Čtvrtý krok: Protože XOR je nenulové číslo, takže můžeme říci, že první hráč vyhraje.

Níže je program, který implementuje nad 4 kroky. 

příkaz java case
C++
/* Game Description-  'A game is played between two players and there are N piles  of stones such that each pile has certain number of stones.  On his/her turn a player selects a pile and can take any  non-zero number of stones upto 3 (i.e- 123)  The player who cannot move is considered to lose the game  (i.e. one who take the last stone is the winner).  Can you find which player wins the game if both players play  optimally (they don't make any mistake)? '  A Dynamic Programming approach to calculate Grundy Number  and Mex and find the Winner using Sprague - Grundy Theorem. */ #include   using namespace std; /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started.  n -> Number of piles  Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game  The piles[] and Grundy[] are having 0-based indexing*/ #define PLAYER1 1 #define PLAYER2 2 // A Function to calculate Mex of all the values in that set int calculateMex(unordered_set<int> Set) {  int Mex = 0;  while (Set.find(Mex) != Set.end())  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' int calculateGrundy(int n int Grundy[]) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  unordered_set<int> Set; // A Hash Table  for (int i=1; i<=3; i++)  Set.insert (calculateGrundy (n-i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game void declareWinner(int whoseTurn int piles[]  int Grundy[] int n) {  int xorValue = Grundy[piles[0]];  for (int i=1; i<=n-1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  printf('Player 1 will winn');  else  printf('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  printf('Player 2 will winn');  else  printf('Player 1 will winn');  }  return; } // Driver program to test above functions int main() {  // Test Case 1  int piles[] = {3 4 5};  int n = sizeof(piles)/sizeof(piles[0]);  // Find the maximum element  int maximum = *max_element(piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy[maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);  /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  return (0); } 
Java
import java.util.*; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG {   /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<Integer> Set) {  int Mex = 0;  while (Set.contains(Mex))  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int Grundy[]) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  // A Hash Table  HashSet<Integer> Set = new HashSet<Integer>();   for (int i = 1; i <= 3; i++)  Set.add(calculateGrundy (n - i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int piles[]  int Grundy[] int n) {  int xorValue = Grundy[piles[0]];  for (int i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  System.out.printf('Player 1 will winn');  else  System.out.printf('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  System.out.printf('Player 2 will winn');  else  System.out.printf('Player 1 will winn');  }  return; } // Driver code public static void main(String[] args)  {    // Test Case 1  int piles[] = {3 4 5};  int n = piles.length;  // Find the maximum element  int maximum = Arrays.stream(piles).max().getAsInt();  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy[] = new int[maximum + 1];  Arrays.fill(Grundy -1);  // Calculate Grundy Value of piles[i] and store it  for (int i = 0; i <= n - 1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);  /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  } }  // This code is contributed by PrinciRaj1992 
Python3
''' Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '     A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem.    piles[] -> Array having the initial count of stones/coins   in each piles before the game has started.   n -> Number of piles     Grundy[] -> Array having the Grundy Number corresponding to   the initial position of each piles in the game     The piles[] and Grundy[] are having 0-based indexing''' PLAYER1 = 1 PLAYER2 = 2 # A Function to calculate Mex of all # the values in that set  def calculateMex(Set): Mex = 0; while (Mex in Set): Mex += 1 return (Mex) # A function to Compute Grundy Number of 'n'  def calculateGrundy(n Grundy): Grundy[0] = 0 Grundy[1] = 1 Grundy[2] = 2 Grundy[3] = 3 if (Grundy[n] != -1): return (Grundy[n]) # A Hash Table  Set = set() for i in range(1 4): Set.add(calculateGrundy(n - i Grundy)) # Store the result  Grundy[n] = calculateMex(Set) return (Grundy[n]) # A function to declare the winner of the game  def declareWinner(whoseTurn piles Grundy n): xorValue = Grundy[piles[0]]; for i in range(1 n): xorValue = (xorValue ^ Grundy[piles[i]]) if (xorValue != 0): if (whoseTurn == PLAYER1): print('Player 1 will winn'); else: print('Player 2 will winn'); else: if (whoseTurn == PLAYER1): print('Player 2 will winn'); else: print('Player 1 will winn'); # Driver code if __name__=='__main__': # Test Case 1  piles = [ 3 4 5 ] n = len(piles) # Find the maximum element  maximum = max(piles) # An array to cache the sub-problems so that  # re-computation of same sub-problems is avoided  Grundy = [-1 for i in range(maximum + 1)]; # Calculate Grundy Value of piles[i] and store it  for i in range(n): calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n);    ''' Test Case 2   int piles[] = {3 8 2};   int n = sizeof(piles)/sizeof(piles[0]);       int maximum = *max_element (piles piles + n);     // An array to cache the sub-problems so that   // re-computation of same sub-problems is avoided   int Grundy [maximum + 1];   memset(Grundy -1 sizeof (Grundy));     // Calculate Grundy Value of piles[i] and store it   for (int i=0; i<=n-1; i++)   calculateGrundy(piles[i] Grundy);     declareWinner(PLAYER2 piles Grundy n); ''' # This code is contributed by rutvik_56 
C#
using System; using System.Linq; using System.Collections.Generic; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG  {   /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; //static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<int> Set) {  int Mex = 0;  while (Set.Contains(Mex))  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int []Grundy) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  // A Hash Table  HashSet<int> Set = new HashSet<int>();   for (int i = 1; i <= 3; i++)  Set.Add(calculateGrundy (n - i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int []piles  int []Grundy int n) {  int xorValue = Grundy[piles[0]];  for (int i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  Console.Write('Player 1 will winn');  else  Console.Write('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  Console.Write('Player 2 will winn');  else  Console.Write('Player 1 will winn');  }  return; } // Driver code static void Main()  {    // Test Case 1  int []piles = {3 4 5};  int n = piles.Length;  // Find the maximum element  int maximum = piles.Max();  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int []Grundy = new int[maximum + 1];  Array.Fill(Grundy -1);  // Calculate Grundy Value of piles[i] and store it  for (int i = 0; i <= n - 1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);    /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  } }  // This code is contributed by mits 
JavaScript
<script> /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? '   A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles   Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game   The piles[] and Grundy[] are having 0-based indexing*/ let PLAYER1 = 1; let PLAYER2 = 2; // A Function to calculate Mex of all the values in that set function calculateMex(Set) {  let Mex = 0;    while (Set.has(Mex))  Mex++;    return (Mex); } // A function to Compute Grundy Number of 'n' function calculateGrundy(nGrundy) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;    if (Grundy[n] != -1)  return (Grundy[n]);    // A Hash Table  let Set = new Set();    for (let i = 1; i <= 3; i++)  Set.add(calculateGrundy (n - i Grundy));    // Store the result  Grundy[n] = calculateMex (Set);    return (Grundy[n]); } // A function to declare the winner of the game function declareWinner(whoseTurnpilesGrundyn) {  let xorValue = Grundy[piles[0]];    for (let i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];    if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  document.write('Player 1 will win  
'
); else document.write('Player 2 will win
'
); } else { if (whoseTurn == PLAYER1) document.write('Player 2 will win
'
); else document.write('Player 1 will win
'
); } return; } // Driver code // Test Case 1 let piles = [3 4 5]; let n = piles.length; // Find the maximum element let maximum = Math.max(...piles) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array(maximum + 1); for(let i=0;i<maximum+1;i++) Grundy[i]=0; // Calculate Grundy Value of piles[i] and store it for (let i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 </script>

Výstup:  

Player 1 will win

Složitost času: O (n^2) kde n je maximální počet kamenů v hromadě. 

Složitost prostoru: O (n) Vzhledem k tomu, že se pole Grundy používá k uložení výsledků dílčích problémů, aby se zabránilo nadbytečným výpočtům a vyžaduje O (n) prostor.

Reference:  
https://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_Theorem

abc s čísly

Cvičení čtenářům: Zvažte níže uvedenou hru. 
Hra hrají dva hráči s N Interges A1 A2 .. An. Na jeho řadě si hráč vybere celé číslo, které ho dělí o 2 3 nebo 6 a poté vezme podlahu. Pokud se celé číslo stane 0, je odstraněno. Poslední hráč, který přesune. Který hráč vyhraje hru, pokud oba hráči hrají optimálně?
Tip: Viz příklad 3 předchozí článek.