Je dána 2D binární matice spolu s[][] kde některé buňky představují překážky (označené0) a zbytek jsou volné buňky (označené1) vaším úkolem je najít délku nejdelší možné trasy ze zdrojové buňky (xs ys) do cílové buňky (xd yd) .
- Můžete se přesunout pouze do sousedních buněk (nahoru dolů vlevo vpravo).
- Diagonální pohyby nejsou povoleny.
- Buňku jednou navštívenou v cestě nelze znovu navštívit ve stejné cestě.
- Pokud není možné dosáhnout cíle, vraťte se
-1.
Příklady:
Vstup: xs = 0 ys = 0 xd = 1 yd = 7
s[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
výstup: 24
Vysvětlení:
Vstup: xs = 0 ys = 3 xd = 2 yd = 2
s[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
výstup: -1
Vysvětlení:
Vidíme, že je to nemožné
dosáhnout buňky (22) z (03).
Obsah
- [Přístup] Použití Backtracking s navštívenou maticí
- [Optimalizovaný přístup] Bez využití prostoru navíc
[Přístup] Použití Backtracking s navštívenou maticí
CPPMyšlenka je použít Zpětné sledování . Začneme od zdrojové buňky matice posouvat se vpřed všemi čtyřmi povolenými směry a rekurzivně kontrolujeme, zda vedou k řešení nebo ne. Pokud je cíl nalezen, aktualizujeme hodnotu nejdelší cesty, jinak pokud žádné z výše uvedených řešení nefunguje, vrátíme z naší funkce hodnotu false.
java scan.nextstring
#include #include #include #include using namespace std; // Function to find the longest path using backtracking int dfs(vector<vector<int>> &mat vector<vector<bool>> &visited int i int j int x int y) { int m = mat.size(); int n = mat[0].size(); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) { return -1; } // Mark current cell as visited visited[i][j] = true; int maxPath = -1; // Four possible moves: up down left right int row[] = {-1 1 0 0}; int col[] = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) { int m = mat.size(); int n = mat[0].size(); // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } vector<vector<bool>> visited(m vector<bool>(n false)); return dfs(mat visited xs ys xd yd); } int main() { vector<vector<int>> mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) cout << result << endl; else cout << -1 << endl; return 0; }
Java import java.util.Arrays; public class GFG { // Function to find the longest path using backtracking public static int dfs(int[][] mat boolean[][] visited int i int j int x int y) { int m = mat.length; int n = mat[0].length; // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) { return -1; // Invalid path } // Mark current cell as visited visited[i][j] = true; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } public static int findLongestPath(int[][] mat int xs int ys int xd int yd) { int m = mat.length; int n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } boolean[][] visited = new boolean[m][n]; return dfs(mat visited xs ys xd yd); } public static void main(String[] args) { int[][] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) System.out.println(result); else System.out.println(-1); } }
Python # Function to find the longest path using backtracking def dfs(mat visited i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid blocked or already visited if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0 or visited[i][j]: return -1 # Invalid path # Mark current cell as visited visited[i][j] = True maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat visited ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - unmark current cell visited[i][j] = False return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 visited = [[False for _ in range(n)] for _ in range(m)] return dfs(mat visited xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main()
C# using System; class GFG { // Function to find the longest path using backtracking static int dfs(int[] mat bool[] visited int i int j int x int y) { int m = mat.GetLength(0); int n = mat.GetLength(1); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0 || visited[i j]) { return -1; // Invalid path } // Mark current cell as visited visited[i j] = true; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.Max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i j] = false; return maxPath; } static int FindLongestPath(int[] mat int xs int ys int xd int yd) { int m = mat.GetLength(0); int n = mat.GetLength(1); // Check if source or destination is blocked if (mat[xs ys] == 0 || mat[xd yd] == 0) { return -1; } bool[] visited = new bool[m n]; return dfs(mat visited xs ys xd yd); } static void Main() { int[] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = FindLongestPath(mat xs ys xd yd); if (result != -1) Console.WriteLine(result); else Console.WriteLine(-1); } }
JavaScript // Function to find the longest path using backtracking function dfs(mat visited i j x y) { const m = mat.length; const n = mat[0].length; // If destination is reached if (i === x && j === y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0 || visited[i][j]) { return -1; } // Mark current cell as visited visited[i][j] = true; let maxPath = -1; // Four possible moves: up down left right const row = [-1 1 0 0]; const col = [0 0 -1 1]; for (let k = 0; k < 4; k++) { const ni = i + row[k]; const nj = j + col[k]; const pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength !== -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } function findLongestPath(mat xs ys xd yd) { const m = mat.length; const n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] === 0 || mat[xd][yd] === 0) { return -1; } const visited = Array(m).fill().map(() => Array(n).fill(false)); return dfs(mat visited xs ys xd yd); } const mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ]; const xs = 0 ys = 0; const xd = 1 yd = 7; const result = findLongestPath(mat xs ys xd yd); if (result !== -1) console.log(result); else console.log(-1);
Výstup
24
Časová náročnost: O(4^(m*n)) Pro každou buňku v matici m x n algoritmus zkoumá až čtyři možné směry (nahoru dolů vlevo vpravo) vedoucí k exponenciálnímu počtu cest. V nejhorším případě prozkoumá všechny možné cesty, což má za následek časovou složitost 4^(m*n).
Pomocný prostor: O(m*n) Algoritmus používá matici m x n navštívených buněk ke sledování navštívených buněk a rekurzní zásobník, který může v nejhorším případě narůst až do hloubky m * n (např. při zkoumání cesty pokrývající všechny buňky). Pomocný prostor je tedy O(m*n).
[Optimalizovaný přístup] Bez využití prostoru navíc
Místo udržování samostatné navštívené matice můžeme znovu použít vstupní matici k označení navštívených buněk během průchodu. To šetří místo navíc a stále zajišťuje, že nebudeme znovu navštěvovat stejnou buňku na cestě.
Níže je uveden postup krok za krokem:
- Začněte od zdrojové buňky
(xs ys). - V každém kroku prozkoumejte všechny čtyři možné směry (zprava dolů doleva nahoru).
- Pro každý platný tah:
- Zkontrolujte hranice a ujistěte se, že buňka má hodnotu
1(volná buňka). - Označte buňku jako navštívenou tím, že ji dočasně nastavíte na
0. - Vraťte se do další buňky a zvyšte délku cesty.
- Zkontrolujte hranice a ujistěte se, že buňka má hodnotu
- Pokud cílová buňka
(xd yd)je dosaženo, porovnejte aktuální délku cesty s dosavadním maximem a aktualizujte odpověď. - Backtrack: obnovte původní hodnotu buňky (
1), než se vrátíte, abyste ji mohli prozkoumat jinými cestami. - Pokračujte v průzkumu, dokud nenajdete všechny možné cesty.
- Vraťte maximální délku cesty. Pokud je cíl nedosažitelný, vraťte se
-1
#include #include #include #include using namespace std; // Function to find the longest path using backtracking without extra space int dfs(vector<vector<int>> &mat int i int j int x int y) { int m = mat.size(); int n = mat[0].size(); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; int maxPath = -1; // Four possible moves: up down left right int row[] = {-1 1 0 0}; int col[] = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) { int m = mat.size(); int n = mat[0].size(); // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } int main() { vector<vector<int>> mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) cout << result << endl; else cout << -1 << endl; return 0; }
Java public class GFG { // Function to find the longest path using backtracking without extra space public static int dfs(int[][] mat int i int j int x int y) { int m = mat.length; int n = mat[0].length; // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } public static int findLongestPath(int[][] mat int xs int ys int xd int yd) { int m = mat.length; int n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } public static void main(String[] args) { int[][] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) System.out.println(result); else System.out.println(-1); } }
Python # Function to find the longest path using backtracking without extra space def dfs(mat i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid or blocked (0 means blocked or visited) if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0: return -1 # Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0 maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - restore the cell's original value (1) mat[i][j] = 1 return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 return dfs(mat xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main()
C# using System; class GFG { // Function to find the longest path using backtracking without extra space static int dfs(int[] mat int i int j int x int y) { int m = mat.GetLength(0); int n = mat.GetLength(1); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i j] = 0; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.Max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i j] = 1; return maxPath; } static int FindLongestPath(int[] mat int xs int ys int xd int yd) { // Check if source or destination is blocked if (mat[xs ys] == 0 || mat[xd yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } static void Main() { int[] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = FindLongestPath(mat xs ys xd yd); if (result != -1) Console.WriteLine(result); else Console.WriteLine(-1); } }
JavaScript // Function to find the longest path using backtracking without extra space function dfs(mat i j x y) { const m = mat.length; const n = mat[0].length; // If destination is reached if (i === x && j === y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; let maxPath = -1; // Four possible moves: up down left right const row = [-1 1 0 0]; const col = [0 0 -1 1]; for (let k = 0; k < 4; k++) { const ni = i + row[k]; const nj = j + col[k]; const pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength !== -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } function findLongestPath(mat xs ys xd yd) { const m = mat.length; const n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] === 0 || mat[xd][yd] === 0) { return -1; } return dfs(mat xs ys xd yd); } const mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ]; const xs = 0 ys = 0; const xd = 1 yd = 7; const result = findLongestPath(mat xs ys xd yd); if (result !== -1) console.log(result); else console.log(-1);
Výstup
24
Časová náročnost: O(4^(m*n))Algoritmus stále zkoumá až čtyři směry na buňku v matici m x n, což vede k exponenciálnímu počtu cest. Úprava na místě neovlivňuje počet prozkoumaných cest, takže časová složitost zůstává 4^(m*n).
Pomocný prostor: O(m*n) Zatímco navštívená matice je eliminována úpravou vstupní matice na místě, zásobník rekurze stále vyžaduje prostor O(m*n), protože maximální hloubka rekurze může být v nejhorším případě m * n (např. cesta navštěvující všechny buňky v mřížce s většinou 1s).