logo

Souběžné sloučení řazení ve sdílené paměti

Dané číslo 'n' a n čísel třídí čísla pomocí Souběžné Sloučit řazení. (Tip: Zkuste použít systémová volání shmget shmat).
Část 1: Algoritmus (jak?)  
Rekurzivně vytvořte ze dvou podřízených procesů jeden pro levou polovinu a jeden pro pravou polovinu. Pokud je počet prvků v poli pro proces menší než 5, proveďte a Řazení vkládání . Rodič dvou dětí pak výsledek sloučí a vrátí se zpět k rodiči a tak dále. Ale jak to udělat souběžně?
Část 2: Logické (PROČ?)  
Důležitou součástí řešení tohoto problému není algoritmizace, ale vysvětlení konceptů operačního systému a jádra. 
Abychom dosáhli souběžného řazení, potřebujeme způsob, jak zajistit, aby dva procesy fungovaly na stejném poli současně. Aby to bylo jednodušší, Linux poskytuje spoustu systémových volání prostřednictvím jednoduchých koncových bodů API. Dva z nich jsou shmget() (pro přidělení sdílené paměti) a shmat() (pro operace se sdílenou pamětí). Vytváříme sdílený paměťový prostor mezi podřízeným procesem, který rozvětvujeme. Každý segment je rozdělen na levé a pravé dítě, které je seřazeny podle zajímavé části, protože pracuje současně! Shmget() žádá jádro, aby alokovalo a sdílená stránka pro oba procesy.
Proč tradiční fork() nefunguje?  
Odpověď spočívá v tom, co fork() skutečně dělá. Z dokumentace 'fork() vytvoří nový proces duplikací volajícího procesu'. Podřízený proces a nadřazený proces běží v oddělených paměťových prostorech. V době fork() mají oba paměťové prostory stejný obsah. Paměť zapisuje soubor-deskriptor (fd) změny atd. provedené jedním z procesů nemají vliv na druhý. Proto potřebujeme segment sdílené paměti.
 

CPP
#include    #include  #include  #include  #include  #include  #include  #include  void insertionSort(int arr[] int n); void merge(int a[] int l1 int h1 int h2); void mergeSort(int a[] int l int h) {  int i len = (h - l + 1);  // Using insertion sort for small sized array  if (len <= 5)  {  insertionSort(a + l len);  return;  }  pid_t lpid rpid;  lpid = fork();  if (lpid < 0)  {  // Lchild proc not created  perror('Left Child Proc. not createdn');  _exit(-1);  }  else if (lpid == 0)  {  mergeSort(a l l + len / 2 - 1);  _exit(0);  }  else  {  rpid = fork();  if (rpid < 0)  {  // Rchild proc not created  perror('Right Child Proc. not createdn');  _exit(-1);  }  else if (rpid == 0)  {  mergeSort(a l + len / 2 h);  _exit(0);  }  }  int status;  // Wait for child processes to finish  waitpid(lpid &status 0);  waitpid(rpid &status 0);  // Merge the sorted subarrays  merge(a l l + len / 2 - 1 h); } /* Function to sort an array using insertion sort*/ void insertionSort(int arr[] int n) {  int i key j;  for (i = 1; i < n; i++)  {  key = arr[i];  j = i - 1;  /* Move elements of arr[0..i-1] that are  greater than key to one position ahead  of their current position */  while (j >= 0 && arr[j] > key)  {  arr[j + 1] = arr[j];  j = j - 1;  }  arr[j + 1] = key;  } } // Method to merge sorted subarrays void merge(int a[] int l1 int h1 int h2) {  // We can directly copy the sorted elements  // in the final array no need for a temporary  // sorted array.  int count = h2 - l1 + 1;  int sorted[count];  int i = l1 k = h1 + 1 m = 0;  while (i <= h1 && k <= h2)  {  if (a[i] < a[k])  sorted[m++] = a[i++];  else if (a[k] < a[i])  sorted[m++] = a[k++];  else if (a[i] == a[k])  {  sorted[m++] = a[i++];  sorted[m++] = a[k++];  }  }  while (i <= h1)  sorted[m++] = a[i++];  while (k <= h2)  sorted[m++] = a[k++];  int arr_count = l1;  for (i = 0; i < count; i++ l1++)  a[l1] = sorted[i]; } // To check if array is actually sorted or not void isSorted(int arr[] int len) {  if (len == 1)  {  std::cout << 'Sorting Done Successfully' << std::endl;  return;  }  int i;  for (i = 1; i < len; i++)  {  if (arr[i] < arr[i - 1])  {  std::cout << 'Sorting Not Done' << std::endl;  return;  }  }  std::cout << 'Sorting Done Successfully' << std::endl;  return; } // To fill random values in array for testing // purpose void fillData(int a[] int len) {  // Create random arrays  int i;  for (i = 0; i < len; i++)  a[i] = rand();  return; } // Driver code int main() {  int shmid;  key_t key = IPC_PRIVATE;  int *shm_array;  int length = 128;  // Calculate segment length  size_t SHM_SIZE = sizeof(int) * length;  // Create the segment.  if ((shmid = shmget(key SHM_SIZE IPC_CREAT | 0666)) < 0)  {  perror('shmget');  _exit(1);  }  // Now we attach the segment to our data space.  if ((shm_array = (int *)shmat(shmid NULL 0)) == (int *)-1)  {  perror('shmat');  _exit(1);  }  // Create a random array of given length  srand(time(NULL));  fillData(shm_array length);  // Sort the created array  mergeSort(shm_array 0 length - 1);  // Check if array is sorted or not  isSorted(shm_array length);  /* Detach from the shared memory now that we are  done using it. */  if (shmdt(shm_array) == -1)  {  perror('shmdt');  _exit(1);  }  /* Delete the shared memory segment. */  if (shmctl(shmid IPC_RMID NULL) == -1)  {  perror('shmctl');  _exit(1);  }  return 0; } 
Java
import java.util.Arrays; import java.util.Random; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; public class ConcurrentMergeSort {  // Method to merge sorted subarrays  private static void merge(int[] a int low int mid int high) {  int[] temp = new int[high - low + 1];  int i = low j = mid + 1 k = 0;  while (i <= mid && j <= high) {  if (a[i] <= a[j]) {  temp[k++] = a[i++];  } else {  temp[k++] = a[j++];  }  }  while (i <= mid) {  temp[k++] = a[i++];  }  while (j <= high) {  temp[k++] = a[j++];  }  System.arraycopy(temp 0 a low temp.length);  }  // RecursiveAction for fork/join framework  static class SortTask extends RecursiveAction {  private final int[] a;  private final int low high;  SortTask(int[] a int low int high) {  this.a = a;  this.low = low;  this.high = high;  }  @Override  protected void compute() {  if (high - low <= 5) {  Arrays.sort(a low high + 1);  } else {  int mid = low + (high - low) / 2;  invokeAll(new SortTask(a low mid) new SortTask(a mid + 1 high));  merge(a low mid high);  }  }  }  // Method to check if array is sorted  private static boolean isSorted(int[] a) {  for (int i = 0; i < a.length - 1; i++) {  if (a[i] > a[i + 1]) {  return false;  }  }  return true;  }  // Method to fill array with random numbers  private static void fillData(int[] a) {  Random rand = new Random();  for (int i = 0; i < a.length; i++) {  a[i] = rand.nextInt();  }  }  public static void main(String[] args) {  int length = 128;  int[] a = new int[length];  fillData(a);  ForkJoinPool pool = new ForkJoinPool();  pool.invoke(new SortTask(a 0 a.length - 1));  if (isSorted(a)) {  System.out.println('Sorting Done Successfully');  } else {  System.out.println('Sorting Not Done');  }  } } 
Python3
import numpy as np import multiprocessing as mp import time def insertion_sort(arr): n = len(arr) for i in range(1 n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def merge(arr l mid r): n1 = mid - l + 1 n2 = r - mid L = arr[l:l + n1].copy() R = arr[mid + 1:mid + 1 + n2].copy() i = j = 0 k = l while i < n1 and j < n2: if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def merge_sort(arr l r): if l < r: if r - l + 1 <= 5: insertion_sort(arr) else: mid = (l + r) // 2 p1 = mp.Process(target=merge_sort args=(arr l mid)) p2 = mp.Process(target=merge_sort args=(arr mid + 1 r)) p1.start() p2.start() p1.join() p2.join() merge(arr l mid r) def is_sorted(arr): for i in range(1 len(arr)): if arr[i] < arr[i - 1]: return False return True def fill_data(arr): np.random.seed(0) arr[:] = np.random.randint(0 1000 size=len(arr)) if __name__ == '__main__': length = 128 shm_array = mp.Array('i' length) fill_data(shm_array) start_time = time.time() merge_sort(shm_array 0 length - 1) end_time = time.time() if is_sorted(shm_array): print('Sorting Done Successfully') else: print('Sorting Not Done') print('Time taken:' end_time - start_time) 
JavaScript
// Importing required modules const { Worker isMainThread parentPort workerData } = require('worker_threads'); // Function to merge sorted subarrays function merge(a low mid high) {  let temp = new Array(high - low + 1);  let i = low j = mid + 1 k = 0;  while (i <= mid && j <= high) {  if (a[i] <= a[j]) {  temp[k++] = a[i++];  } else {  temp[k++] = a[j++];  }  }  while (i <= mid) {  temp[k++] = a[i++];  }  while (j <= high) {  temp[k++] = a[j++];  }  for (let p = 0; p < temp.length; p++) {  a[low + p] = temp[p];  } } // Function to check if array is sorted function isSorted(a) {  for (let i = 0; i < a.length - 1; i++) {  if (a[i] > a[i + 1]) {  return false;  }  }  return true; } // Function to fill array with random numbers function fillData(a) {  for (let i = 0; i < a.length; i++) {  a[i] = Math.floor(Math.random() * 1000);  } } // Function to sort the array using merge sort function sortArray(a low high) {  if (high - low <= 5) {  a.sort((a b) => a - b);  } else {  let mid = low + Math.floor((high - low) / 2);  sortArray(a low mid);  sortArray(a mid + 1 high);  merge(a low mid high);  } } // Main function function main() {  let length = 128;  let a = new Array(length);  fillData(a);  sortArray(a 0 a.length - 1);  if (isSorted(a)) {  console.log('Sorting Done Successfully');  } else {  console.log('Sorting Not Done');  } } main(); 

výstup: 
 



Sorting Done Successfully  

Časová složitost :O(N log N)

Pomocný prostor:O(N)


Zlepšení výkonu?  
Pokuste se načasovat kód a porovnat jeho výkon s tradičním sekvenčním kódem. Byli byste překvapeni, kdybyste věděli, že sekvenční řazení je lepší! 
Když řekněme, že levé dítě přistupuje k levému poli, pole se načte do mezipaměti procesoru. Nyní, když se přistupuje k pravému poli (kvůli souběžným přístupům), dojde k chybě mezipaměti, protože mezipaměť je vyplněna levým segmentem a poté je do vyrovnávací paměti zkopírován pravý segment. Tento proces tam a zpět pokračuje a snižuje výkon na takovou úroveň, že má horší výkon než sekvenční kód.
Existují způsoby, jak omezit vynechání mezipaměti řízením pracovního postupu kódu. Ale úplně se jim vyhnout nelze!